Climatology

Influence of the recent winter Arctic sea ice loss in short-term simulations of a regional atmospheric model

  • Box, JE et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 141–10 (2019).

    Article CAS Google Scholar

  • Druckenmiller, ML et al. The Arctic. Bull. Am. Meteorol. Soc. 102S263 – S316 (2021).

    Article Google Scholar

  • Fox-Kemper, B. et al. Ocean, cryosphere and sea level change. In Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).

    Google Scholar

  • Jun, S.-Y., Ho, C.-H., Jeong, J.-H., Choi, Y.-S. & Kim, B.-M. Recent changes in winter Arctic clouds and their relationships with sea ice and atmospheric conditions. Tellus A Dyn. Meteorol. Oceanogr. 6829130 (2016).

    Article Google Scholar

  • Wu, B. Winter atmospheric circulation anomaly associated with recent Arctic winter warm anomalies. J. Clim. 308469–8479 (2017).

    ADS Article Google Scholar

  • Wu, B., Su, J. & D’Arrigo, R. Patterns of Asian winter climate variability and links to Arctic sea ice. J. Clim. 286841–6858 (2015).

    ADS Article Google Scholar

  • Blackport, R., Screen, JA, van der Wiel, K. & Bintanja, R. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Clim. Chang. 9697–704 (2019).

    ADS Article Google Scholar

  • Chen, HW, Zhang, F. & Alley, RB The robustness of midlatitude weather pattern changes due to Arctic sea ice loss. J. Clim. 297831–7849 (2016).

    ADS Article Google Scholar

  • Kim, B.-M. et al. Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep. 740051 (2017).

    ADS CAS PubMed PubMed Central Article Google Scholar

  • Peings, Y. & Magnusdottir, G. Response of wintertime northern hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Clim. 27244–264 (2014).

    ADS Article Google Scholar

  • Luo, B., Luo, D., Wu, L., Zhong, L. & Simmonds, I. Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett. 12054017 (2017).

    ADS Article Google Scholar

  • Park, D.-SR, Lee, S. & Feldstein, SB Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Clim. 284027–4033 (2015).

    ADS Article Google Scholar

  • Park, H.-S., Lee, S., Son, S.-W., Feldstein, SB & Kosaka, Y. The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Clim. 285030–5040 (2015).

    ADS Article Google Scholar

  • Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509209–212 (2014).

    ADS CAS PubMed Article Google Scholar

  • Perlwitz, J., Hoerling, M. & Dole, R. Arctic tropospheric warming: Causes and linkages to lower latitudes. J. Clim. 282154–2167 (2015).

    ADS Article Google Scholar

  • Yeager, S. & Danabasoglu, G. The origins of late-twentieth-century variations in the large-scale North Atlantic circulation. J. Clim. 273222–3247 (2014).

    ADS Article Google Scholar

  • Cohen, J. et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Chang. 1020–29 (2020).

    ADS Article Google Scholar

  • Kim, B.-M. et al. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 54646 (2014).

    ADS CAS PubMed Article Google Scholar

  • Kug, J.-S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8759–762 (2015).

    ADS CAS Article Google Scholar

  • McCusker, KE, Fyfe, JC & Sigmond, M. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci. 9838–842 (2016).

    ADS CAS Article Google Scholar

  • Sun, L., Perlwitz, J. & Hoerling, M. What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures ?. Geophys. Res. Lett. 1, 1–8. https://doi.org/10.1002/2016GL069024 (2016).

    Article Google Scholar

  • Van Oldenborgh, GJ et al. Cold waves are getting milder in the northern midlatitudes. Environ. Res. Lett. 14114004 (2019).

    ADS Article Google Scholar

  • Smith, ET & Sheridan, SC Where do cold air outbreaks occur, and how have they changed over time ?. Geophys. Res. Lett. 471–11 (2020).

    Google Scholar

  • Rhines, A., McKinnon, KA, Tingley, MP & Huybers, P. Seasonally resolved distributional trends of North American temperatures show contraction of winter variability. J. Clim. 301139–1157 (2017).

    ADS Article Google Scholar

  • Jun, S.-Y., Choi, S.-J. & Kim, B.-M. Dynamical core in atmospheric model does matter in the simulation of Arctic climate. Geophys. Res. Lett. 452805–2814 (2018).

    ADS Article Google Scholar

  • Screen, JA et al. Consistency and discrepancy in the atmospheric response to Arctic sea loss across climate models. Nat. Geosci. 11155–163 (2018).

    ADS CAS Article Google Scholar

  • Smith, DM et al. The polar amplification model intercomparison project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev. 121139–1164 (2019).

    ADS Article Google Scholar

  • Sun, L., Deser, C., Simpson, I. & Sigmond, M. Uncertainty in the winter tropospheric response to Arctic Sea ice loss: The role of stratospheric polar vortex internal variability. J. Clim. 1, 1–58. https://doi.org/10.1175/jcli-d-21-0543.1 (2022).

    Article Google Scholar

  • Sun, L., Deser, C., Tomas, RA & Alexander, M. Global coupled climate response to polar sea ice loss: Evaluating the effectiveness of different ice-constraining approaches. Geophys. Res. Lett. 47788 (2020).

    Google Scholar

  • Peings, Y., Labe, ZM & Magnusdottir, G. Are 100 ensemble members enough to capture the remote atmospheric response to 12 ° C Arctic sea ice loss ?. J. Clim. 343751–3769 (2021).

    ADS Article Google Scholar

  • Jiang, Z., Feldstein, SB & Lee, S. Two atmospheric responses to winter sea ice decline over the Barents – Kara seas. Geophys. Res. Lett. 487 (2021).

    Google Scholar

  • Hines, KM & Bromwich, DH Simulation of late summer Arctic clouds during ASCOS with polar WRF. Mon. Weather Rev. 145521–541 (2017).

    ADS Article Google Scholar

  • Skamarock, WC et al. A description of the advanced research WRF version 3. in NCAR Tech. Note NCAR / TN-4751STR 113 (2008). https://doi.org/10.5065/D68S4MVH

  • Dai, G., Mu, M. & Wang, L. The influence of sudden Arctic sea-ice thinning on North Atlantic oscillation events. Atmos. Ocean 5939–52 (2021).

    Article Google Scholar

  • Ma, X. et al. Influence of Arctic sea ice concentration on extended-range prediction of strong and long-lasting ural blocking events in winter. J. Geophys. Res. Atmos. 1275 (2022).

    Google Scholar

  • Cho, H., Jun, S.-Y., Ho, C.-H. & McFarquhar, G. Simulations of winter Arctic clouds and associated radiation fluxes using different cloud microphysics schemes in the polar WRF: Comparisons With CloudSat, CALIPSO, and CERES. J. Geophys. Res. Atmos. 1251–10 (2020).

    Article Google Scholar

  • Wilson, AB, Bromwich, DH & Hines, KM Evaluation of polar WRF forecasts on the Arctic system reanalysis domain: 2. Atmospheric hydrologic cycle. J. Geophys. Res. Atmos. 117D04107 (2012).

    ADS Google Scholar

  • Lin, Y.-L. Mesoscale Dynamics (Cambridge University Press, 2007). https://doi.org/10.1017/CBO978051161964.

    Book Google Scholar

  • Kug, J.-S., Jin, FF, Park, J., Ren, HL & Kang, I.-S. A general rule for synoptic-eddy feedback onto low-frequency flow. Clim. Dyn. 351011–1026 (2010).

    Article Google Scholar

  • Voosen, P. Arctic ice loss not a big culprit in harsh winters. Science 372668–669 (2021).

    ADS CAS PubMed Article Google Scholar

  • Blackport, R., Fyfe, JC & Screen, JA Arctic change reduces the risk of cold extremes. Science 375729–729 (2022).

    ADS PubMed Article Google Scholar

  • He, S., Xu, X., Furevik, T. & Gao, Y. Eurasian cooling linked to the vertical distribution of Arctic warming. Geophys. Res. Lett. 4710 (2020).

    Google Scholar

  • Labe, Z., Peings, Y. & Magnusdottir, G. Warm Arctic, cold Siberia pattern: Role of full Arctic amplification versus sea ice loss alone. Geophys. Res. Lett. 471–11 (2020).

    Article Google Scholar

  • Flato, G. et al. Evaluation of Climate Models. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change741–866 (eds Stocker, TF et al.). (Cambridge Universiyt Press, 2012). https://doi.org/10.1017/CBO9781107415324.020.

  • Overland, JE et al. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Chang. 6992–999 (2016).

    ADS Article Google Scholar

  • Hersbach, H. et al. The ERA5 global reanalysis. QJR Meteorol. Soc. 1461999–2049 (2020).

    ADS Article Google Scholar

  • NCEP. NCEP FNL Operational model global tropospheric analyzes, continuing from July 1999. in Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D6M043C6 (2000)

  • Bromwich, DH et al. The Arctic system reanalysis, version 2. Bull. Am. Meteorol. Soc. 99805–828 (2018).

    ADS Article Google Scholar

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button