Environmental science

Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea

  • Ceramicola, S., Dupré, S., Somoza, L. & Woodside, J. in Submarine Geomorphology (eds Aaron Micallef, Sebastian Krastel, & Alessandra Savini) 367-387 (Springer International Publishing, 2018).

  • Ruff, SE et al. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 1124015–4020 (2015).

    ADS CAS Article Google Scholar

  • Feng, D. et al. Cold seep systems in the South China Sea: An overview. J. Asian Earth Sci. 1683–16 (2018).

    ADS Article Google Scholar

  • Zhang, X. et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea. Geochem. Geophy. Geosy. 183700–3713 (2017).

    ADS CAS Article Google Scholar

  • Zhang, X. et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep-Sea Res. Pt. I 1231–12 (2017).

    ADS Article Google Scholar

  • Cao, L. et al. In situ detection of the fine scale heterogeneity of active cold seep environment of the Formosa Ridge, the South China Sea. Journal of Marine Systems 218103530 (2021).

    Article Google Scholar

  • Du, Z., Zhang, X., Xue, B., Luan, Z. & Yan, J. The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system. Solid Earth Sciences 5153–168 (2020).

    Article Google Scholar

  • Wang, B. et al. A novel monitorable and controllable long-coring system with a maximum operating depth of 6000 m. Marine Sciences 4225–31 (2018).

    CAS Google Scholar

  • Du, Z. et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea. Solid Earth Sciences 5153–168 (2018).

    ADS Article Google Scholar

  • Li, D., Liu, CM, Luo, R., Sadakane, K. & Lam, TW MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 311674–1676 (2015).

    CAS Article Google Scholar

  • Kang, DD et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7e7359 (2019).

    Article Google Scholar

  • Nissen, JN et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39555–560 (2021).

    CAS Article Google Scholar

  • Wu, YW, Simmons, BA & Singer, SW MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32605–607 (2016).

    CAS Article Google Scholar

  • Uritskiy, GV, DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6158 (2018).

    Article Google Scholar

  • Olm, MR, Brown, CT, Brooks, B. & Banfield, JF dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 112864–2868 (2017).

    CAS Article Google Scholar

  • Chaumeil, PA, Mussig, AJ, Hugenholtz, P. & Parks, DH GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 361925–1927 (2019).

    PubMed Central Google Scholar

  • Parks, DH, Imelfort, M., Skennerton, CT, Hugenholtz, P. & Tyson, GW CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 251043–1055 (2015).

    CAS Article Google Scholar

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, PA metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27824–834 (2017).

    CAS Article Google Scholar

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11119 (2010).

    Article Google Scholar

  • Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2827–30 (2000).

    CAS Article Google Scholar

  • Buchfink, B., Xie, C. & Huson, DH Fast and sensitive protein alignment using DIAMOND. Nat. Methods 1259–60 (2015).

    CAS Article Google Scholar

  • Emms, DM & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20238 (2019).

    Article Google Scholar

  • Edgar, RC MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 321792–1797 (2004).

    CAS Article Google Scholar

  • Capella-Gutierrez, S., Silla-Martinez, JM & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 251972–1973 (2009).

    CAS Article Google Scholar

  • Price, MN, Dehal, PS & Arkin, AP FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5e9490 (2010).

    ADS Article Google Scholar

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892585 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892586 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892587 (2022).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892588 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892589 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892590 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892591 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892592 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892593 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892594 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892595 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892596 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892597 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892598 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892599 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892600 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892601 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892602 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892603 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892604 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892605 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892606 (2021).

  • NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892607 (2021).

  • Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea, figsharehttps://doi.org/10.6084/m9.figshare.16625644.v1 (2022).

  • Eisenhofer, R. et al. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 27105–117 (2019).

    CAS Article Google Scholar

  • Salter, SJ et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 1287 (2014).

    Article Google Scholar

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34i884–i890 (2018).

    Article Google Scholar

  • Related Articles

    Leave a Reply

    Your email address will not be published.

    Back to top button