Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea
Ceramicola, S., Dupré, S., Somoza, L. & Woodside, J. in Submarine Geomorphology (eds Aaron Micallef, Sebastian Krastel, & Alessandra Savini) 367-387 (Springer International Publishing, 2018).
Ruff, SE et al. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 1124015–4020 (2015).
Feng, D. et al. Cold seep systems in the South China Sea: An overview. J. Asian Earth Sci. 1683–16 (2018).
Zhang, X. et al. In situ Raman detection of gas hydrates exposed on the seafloor of the South China Sea. Geochem. Geophy. Geosy. 183700–3713 (2017).
Zhang, X. et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep-Sea Res. Pt. I 1231–12 (2017).
Cao, L. et al. In situ detection of the fine scale heterogeneity of active cold seep environment of the Formosa Ridge, the South China Sea. Journal of Marine Systems 218103530 (2021).
Du, Z., Zhang, X., Xue, B., Luan, Z. & Yan, J. The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system. Solid Earth Sciences 5153–168 (2020).
Wang, B. et al. A novel monitorable and controllable long-coring system with a maximum operating depth of 6000 m. Marine Sciences 4225–31 (2018).
Du, Z. et al. In situ Raman quantitative detection of the cold seep vents and fluids in the chemosynthetic communities in the South China Sea. Solid Earth Sciences 5153–168 (2018).
Li, D., Liu, CM, Luo, R., Sadakane, K. & Lam, TW MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 311674–1676 (2015).
Kang, DD et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7e7359 (2019).
Nissen, JN et al. Improved metagenome binning and assembly using deep variational autoencoders. Nat. Biotechnol. 39555–560 (2021).
Wu, YW, Simmons, BA & Singer, SW MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32605–607 (2016).
Uritskiy, GV, DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6158 (2018).
Olm, MR, Brown, CT, Brooks, B. & Banfield, JF dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 112864–2868 (2017).
Chaumeil, PA, Mussig, AJ, Hugenholtz, P. & Parks, DH GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 361925–1927 (2019).
Parks, DH, Imelfort, M., Skennerton, CT, Hugenholtz, P. & Tyson, GW CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 251043–1055 (2015).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, PA metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27824–834 (2017).
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11119 (2010).
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2827–30 (2000).
Buchfink, B., Xie, C. & Huson, DH Fast and sensitive protein alignment using DIAMOND. Nat. Methods 1259–60 (2015).
Emms, DM & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20238 (2019).
Edgar, RC MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 321792–1797 (2004).
Capella-Gutierrez, S., Silla-Martinez, JM & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 251972–1973 (2009).
Price, MN, Dehal, PS & Arkin, AP FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5e9490 (2010).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892585 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892586 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892587 (2022).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892588 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892589 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892590 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892591 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892592 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892593 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892594 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892595 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892596 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892597 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892598 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892599 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892600 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892601 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892602 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892603 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892604 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892605 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892606 (2021).
NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRR13892607 (2021).
Zhang, H. et al. Metagenome sequencing and 768 microbial genomes from cold seep in South China Sea, figsharehttps://doi.org/10.6084/m9.figshare.16625644.v1 (2022).
Eisenhofer, R. et al. Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends Microbiol. 27105–117 (2019).
Salter, SJ et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 1287 (2014).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34i884–i890 (2018).